KATHMANDU UNIVERSITY SCHOOL OF
MANAGEMENT

BBIS
COM 102 : 3 Credit Hours

6. Control structures and statements in C
contd ..

30/01/2022

Loops Control Statements

A loop or repetition structure goes through a block of code either a predefined number of
times, or until something occurs to cause the program to break out of the loop.

LOOpPS

* used for the program to be executed repeatedly while expression is
true.

 When a block of code needs to be executed several number of times.

* When the expression becomes false ,the loop terminates and the
control passes on to the statement following the loop.

* Generally a looping process involves:
e Control variable initialization
e Condition evaluation
* Loop body execution
* Control variable updation

Loop types

1. Entry Controlled Loop:-

Also known as pre-checking loop. Before executing the loop, the condition is checked first.
2. Exit Controlled Loop:-

Also known as post-checking loop. The condition is checked after executing the loop.

While loop Repeats a statement or group of statements while a given condition is true. It Enrty
tests the condition before executing the loop body. Controlled
2. For loop Executes a sequence of statements multiple times and abbreviates the code Enrty
that manages the loop variable. Controlled
3. do...while It is more like a while statement, except that it tests the condition at the end Exit
loop of the loop body. Controlled
4, Nested loops You can use one or more loops inside any other while, for, or do..while loop.

Table 1: Loop types and its description

In programming, above loop types are considered as controlled statements that can regulate the flow of
the program execution.

Loop Control statement (Jump statements)

1. break Terminates the loop or switch statement and transfers execution to the
statement immediately following the loop or switch.

2. continue Causes the loop to skip the remainder of its body and immediately retest its
condition prior to reiterating.

3. goto Transfers control to the labeled statement.

Table 2: Loop control statement and its description

* Every loop consists of two sections:
* Loop body
* A block that contains the intended iterative statements.

* Control statement
* A condition that dictates how long a loop would be iterated.

* While Loop: * Do-While Loop:
while(condition) // Control statement do {
{ // Loop body
// Loop body While(condition) // Control statement
}
* For Loop:

for(controlVariablelnitialization; condition; increment/decrement) // Control statement

{
// Loop body

While statement

* In a while loop, a block of code gets executed until the condition
satisfies.

* Syntax of while loop in C:-
While(condition) // Control statement

{
// Loop body

a++;

’

}
* Working of while loop:

* First the while loop checks for the condition.

 If the condition is true, the statements inside the body of the while loop get executed until the
condition is false.

« If the condition is false, the while loop terminates.

Flowchart of While loop

while(A=True) do

B
end while

statements

Example

#include<stdio.h>

int main(){
printf(“Multiplication table of 10:\n");
inti=1,number=10;
while(i<=10) //control-statements

{
printf("%d * %d = %d \n", number, i,
(number*i));
i++;

}

return O;

main()

{

int a;

a=0;

while (a <= 100)

{
printf(“%d degrees F = %d degrees C\n", a, (a-32) *5/9);
a=a+10;

}

}

main()
{
inti=1,sum=0;
while(i <=100){
sum=sum-+i;
printf(“Sum=%d \t & i=%d\n”,sum,i++);

main()

}
}
main()
{
inti=1,sum=0;
while(i <=100){
if(i%2==0)
{
sum=sum-+i;
}
printf(“Sum=%d \t & i=%d\n”,sum,i++);
}
}

{
inti=1,sum=0;
while(i <=100){
sum=sum-+i;
printf(“Sum=%d \t & i=%d\n”,sum,i=i+5
);
}
}
main()
{
inti=1,sum=0;
while(i <=100){
if(1%2==0 && i%5==0)
{
sum=sum-i;
}
printf(“Sum=%d \t & i=%d\n”,sum,i++);
}
}

10

Example:

 Calculating a factorial 5!. The factorial n! is defined as n*(n-1)!

main() {
inti, f, n; // declaration
i=1; //initialization
f=1; //initialization

/*Processing */

printf(“Please input a number\n”);
scanf(“%d”, &n);

while (i <= n) {

*=

i++;

]

}

/* termination */
printf(“factorial %d! = %d\n", n, f);

C

stait)

false

e

ptint nt

l

slop

11

Control of Repetition

1. Sentinel-controlled repetition
2. Counter-controlled repetition

1. Counter-controlled repetition
* Loop repeated until counter reaches a certain value.
* Definite repetition: number of repetitions is known
Example:

* A student takes four courses in a quarter. Each course will be assigned a grade
with the score from O to 4.

* Develop a C program to calculate the grade point average (GPA) for the
quarter.

Flowchart

C stlail

)

NUM=4
counli=0
iolall=0

The flowchart for
program gpa.c

false

tae otlal=tctal+grade
tead grade couhl=couhi+l

gpa=tiotal MNUM

l

/ ptint gpa /

l

o

D

#define NUM 4
main() {
int count;
double grade, total, gpa;
count =0;
total = 0;
/* processing */
while(count < NUM) {
printf("Enter a grade: ");
scanf("%If", &grade);
total += grade;
count++;
}
/* termination */
gpa = total/NUM;
printf("The GPA is: %f\n",
gpa);

Another Example

Display the character and its' ASCIl value for all lower case characters.

H#include <stdio.h>
int main()

{
//1
int start = 'a';
//2
while (start <= 'z')
{
//3
printf("%c : %d\n", start, start);
//4
start++;

}

return O;

14

2. Sentinel-controlled repetition

* Loop repeated until the sentinel (signal) value is entered.

* Indefinite repetition: number of repetitions is unknown when the
loop begins execution.

« An example of when we would use sentinel-controlled repetition Is
when we are processing data from a file and we do not know In
advance when we would reach the end of the file.

* Example:

* Develop a GPA calculation program that will process grades with scores in the
range of [0, 4] for an arbitrary number of courses.

Flowchart

C="
I

SENTINELNUM=—1
HIGHESTMARK—4
count=0

1ota =0

=

gtade I=SENTINELNUM

ue

count =0

¢

spa=total/count

punt
/ print gpa / gtade e nicled"
= J

ae

stade >=0
and

gtade <—=HIGHESTMARK

/

puint ettor
message

16

Source-code:

#define SENTINEL_NUM -1
#define HIGHESTMARK 4
main() {

/* termination */
if(count '=0) {
gpa = total/count;

int count;

double grade, total, gpa;

/* initialization */

count =0;

total = 0;

printf("Enter a grade [0, %d] or %d to end: ",

HIGHESTMARK, SENTINEL_NUM);
scanf("%lIf", &grade);

while((int)grade != SENTINEL_NUM) {
if(0 <= grade && grade <= HIGHESTMARK) {

printf("The GPA is: %f\n",

gpa);
}
else
printf("No grade entered.\n");

Output:

total += grade; Enter a grade [0, 4] or -1 to end: 4

count++; Enter a grade [0, 4] or -1 to end: 3.7

‘}else{ Enter a grade [0, 4] or -1 to end: 3.3

orintf("Invalid grade %c\n", \a'); Enter a grade [0, 4] or -1 to end: 4

} Enter a grade [0, 4] or -1 to end: 10

printf("Enter a grade [0, %d] or %d to end: ", Invalid grade

HIGHESTMARK, SENTINEL_NUM); Enter a grade [0, 4] or -1 to end: 3.7
Enter a grade [0, 4] or -1 to end: -1

scanf("%lIf", &grade);

The GPA is: 3.740000

17

Do-while loop

* Syntax:
do {
// Loop body
IWhile(condition) // Control statement

* The evaluation of the controlling expression takes place after
each execution of the loop body.

* The loop body is executed repeatedly until the return value
of the controlling expression is equal to O.

18

Example

a=10 Syntax:
B=10 do
do | // Loop body
o . IWhile(condition) // Control
printf("%d\n", 10);
a=a+1: statement

} while (a < b);

Operation: Similar to the while control except that statement is executed before

the expression is evaluated.
This guarantees that statement is always executed at least one time even if

expression is FALSE.

19

Flowchart of do-while loop

Syntax:
do

~ statement
While(expression);

1-Statement

True

False

Statement

20

Example

inti=4;

do {
printf(“%d ”, 4);
i++;

4

} while(5< 5);

Output:
01234

— What is the output of the following example?

inti=10;

do {
printf(“%d ”, 10);
i++;

4

} while(11< 5);

Output: 10

21

Some programs to practice using While and
do-while

 WAP to find sum of ten numbers.

WAP to display all numbers between 1 to 1000 that are perfectly divisible by 10.

WAP to display all numbers between 2000 to 100 that are perfectly divisible by 13
and 15 and 17 and 19.

WAP to find sum of all numbers between 500 to 1500 that are perfectly divisible
by 3 and 5 and 15 and 45.

WAP to find sum of all numbers between 10000 to 1000 that are perfectly
divisible by 3 and 7 and 9 and 42.

WAP to find factorial of given number — N! =N * (N-1)!
WAP to check whether a given number is prime or not.
. Hint— A number is prime if it is divisible by 1 and the number itself only
WAP to generate all prime numbers between 100 to 1.

The for Statement

Structure: for(exprl; expr2; expr3)

{

}

statement;

* simply a shorthand way of expressing a while statement:

exprl;
while(expr2)
{

statement;
expr3

for(controlVariablelnitialization; condition; increment/decrement)
// Control statement

{
// Loop body

}

23

Common errors to avoid

* Putting = when you mean ==in an if or while statement

* Forgetting to increment the counter inside the while loop — If you forget to
increment the counter, you get an infinite loop(the loop never ends).

e Accidentally putting a ; at the end of a for loop or if statement so that the
statement has no effect

For example:
for (x=1; x<10; x++);
printf("%d\n",x);

only prints out one value because the semicolon after the
for statement acts as the one line the for loop executes.

Structure: for(exprl; expr2; expr3)

{

statement;

}

* The expression expressionl is evaluated as a void expression before
the first evaluation of the controlling expression.

* The expression expression2 is the controlling expression that is
evaluated before each execution of the loop body.

* The expression expression3 is evaluated as a void expression after
each execution of the loop bodly.

Flowchart of a for loop

for(expressionl; expression2; expression3)

statement

expression 1

expression 2

statement

expression 3

26

int i; i
for(i=0;i<5;i++)
{
printf(“%d ”, i); true
} print i
false
initialize control variable i increment control variable

Output: 1234
focr(i=1; i<S; H+)
——

1

loop continuation condition

27

Example:

 Calculating a factorial 5!.

main() {

inti, f, n;
printf(“Please input a number\n”);
scanf(“%d”, &n);
for(i=1, f=1; i<=n; i++)
{
f =f*i;
}
printf(“factorial %d! = %d\n", n, f);

28

Jump Statements

* Break Statements
* The break statement provides an early exit from the for, while, do-while, and
for each loops as well as switch statement.

* A break causes the innermost enclosing loop or switch to be exited
immediately.

* Example: [inti;
for(i=0; i<5; i++)

{

if(i == 3)
{

break;

}
printf("%d", i);

Output:012

Continue statements

* It helps skip the remaining part of the loop.

It continues to execute the next iteration.

It causes early execution of the next iteration of the enclosing loop.
It can’t be used with ‘switch’ and ‘label’ since it is not compatible.
A continue statement should only appear in a loop body.

mtT;
for(i=0; i<5; i++)
{
if(i == 3)
{
continue;
i+=3;
}
printf("%d", i);
} Output: 01264

goto statements

A goto statement in C programming provides an unconditional jump from
the 'goto’ to a labeled statement in the same function.

NOTE - Use of goto statement is highly discouraged in any programming
language because it makes difficult to trace the control flow of a program,
making the program hard to understand and hard to modify.

Any program that uses a goto can be rewritten to avoid them.

Syntax:
goto label;

label: statement;

Example:

#include <stdio.h>
int main () {
/* local variable definition */
inta=10;
/* do loop execution */
LOOP:do {
if(a==15){
/* skip the iteration */
a=a+1l;
goto LOOP;
}
printf("value of a: %d\n", a);
a++;
twhile(a<20);
return O;

}

Result:

value of a:
value of a:
value of a:
value of a:
value of a:
value of a:
value of a:
value of a:
value of a:

10
11
12
13
14
16
17
18
19

Nested Loop

* Nested loop = loop inside loop

* Program flow

* The inner loops must be finished before the outer loop resumes
iteration.

Q. Write a program to print a multiplication table.

1]
2| 4
3] 6 9

16 24 32 40 48 56 64
18 27 36 45 54 63 72 81
20 30 40 50 60 70 80 90 100

34

Some Programs to do.

 WAP to generate multiplication table of any given number
* WAP to generate multiplication table of number 1 to 5.

* WAP to check whether a given program in Armstrong ornot.
* 153 is a Armstrong number because 13+53+33=153

 WAP to check whether a number is strong or not.
* 145 s a strong number because 1! + 41 +5 1 =145

 WAP to check whether a number is perfect or not.
e 28 is a perfect number because 1+2+4+7+14 = 28

 WAP to find GCD (HCF) of given two numbers.
* WAP to find LCM of given numbers.

Any Queries???

