14/02/2022

KAT

MANDU UNIVERSITY SC
MANAGEMENT

BBIS
COM 102 : 3 Credit Hours

OOL OF

Outlines

* Introduction

* Defining an Array

* Processing an Array

« Passing Array to Function
« Multidimensional Array

* Quiz: Two sets
e Internal Exam

Why arrays???

Suppose, you want to declare 1 or at most 5 variable of same type.

What will you do?
-> simply make 5 variable of same data type as usual.

NOT A BIG DEAL!!!!
But, you want store 100 or more variable of same type.
THEN???

int main()

{

Int marksl1, marks2, ..., marks100.....;

return O;

}

You will better do...

int main(void)

> Size = 100
{ —
Int marks[100]; // Array that holds 100 integer data.
- Arraysize=5 "
return O;
} 2 3
Indices — 0 1
OR naices
int main(void) c Arrays
{
Int char[10]; // Array that holds 10 character data.
_, Size =10
return O;

}

Arrays

»An array is a variable that can store multiple values. For example, if
you want to store 100 integers, you can create an array for it.

»An array is a collection of elements of the same type that are
referenced by a common name.

» It is an aggregate or derived data type. An array is a derived data type
because it cannot be defined on its own, it is a collection of basic data
types usually, such as integers, doubles, floats, Booleans, etc.

» All the elements of an array occupy a set of contiguous memory
locations.

e Contiguous memory locations for storing 1000 students’ marks.

* Graphically,

stored data of

tvpe integer

999 | 97

index subscript
$ starting from 0
stud Mark([0] instead of 1
studMark[1]

stud Mark[2]

stud Mark([3]

arrav's name

stud Mark[999]

émor}' storage

Arrays

»Instead of declaring individual variables, such as numberO,
numberl, ..., and number99,

»declare one array variable such as numbers and use
numbers|[0], numbers|[1], and ..., numbers[99] to represent
iIndividual variables.

» A specific element in an array Is accessed by an index.

First Element Last Element

l !

Numbers[0] | Numbers[1] Numbers[Z]’ NumberS[-i!]’

Index 0 1 2 3

ARRAYS

- In C language, array has a fixed size meaning once the
size is given to it, it cannot be changed i.e. you can't
shrink it neither can you expand it.

- If we change the size we can’t be sure (it's not possible
every time) that we get the next memory location to us as
free.

> The shrinking will not work because the array, when
declared, gets memory statically allocated, and thus
compiler is the only one can destroy lIt.

One Dimensional Arrays

Dimension refers to the array's size, which is how big the array is.

A single or one dimensional array declaration has the following form,
array_element_data type array_namelarray_size];

Here,

o array_element _data_type define the base type of the array, which is
the type of each element in the array.

o array_name is any valid C identifier name that obeys the same rule
for the identifier naming.

o array_size defines how many elements the array will hold.

For example, to declare an array of 30 characters, that construct a people

name, we could declare,
char cName[30];

* In this statement, the array character can store up to 30 characters with the
first character occupying location cName[0] and the last character occupying

cName|[29].
= Note that the index runs from 0 to 29. In C, an index always starts from 0 and

ends with array's (size-1).
= So, take note the difference between the array size and subscript/index
terms.

Note: In C, each character occupies 1 byte of data.

How to declare an array?

dataType arrayNamel[arraySize];
Eg: int marks[5], float data[20]
For example,

float mark[5];

Here, we declared an array, mark, of floating-point type. And its size is 5.
Meaning, it can hold 5 floating-point values.

It's important to note that the size and type of an array cannot be changed
once it is declared.

Access Array Elements

o You can access elements of an array by indices.

o Suppose you declared an array mark as above. The first element is
mark[0], the second element is mark[1] and so on.

marks[0] marks[1] marksl[2] marks[3] marks[4]

Arrays have 0 as the first index, not 1. In this example, mark[0] is the
first element.

If the size of an array is n, to access the last element, the n-1 index is
used. In this example, mark[4]

Suppose the starting address of mark[0] is 2120d. Then, the address
of the mark[1] will be 2124d. Similarly, the address of mark[2] will be
2128d and so on.

This is because the size of a float is 4 bytes.

How to initialize an array?

It is possible to initialize an array during declaration. For example,
int mark[5] = {19, 10, 8, 17, 9};

You can also initialize an array like this.
int mark[] = {19, 10, 8, 17, 9};

o Here, we haven't specified the size.

« However, the compiler knows its size is 5 as we are initializing it with
5 elements.

mark
mark
mark
mark

mark

B2 W N P o

is equal to 60
is equal to 70
is equal to 80
is equal to 90
is equal to 100

marks[0] marks[l] marks[2] marks[3] marks[4]

Change Value of Array elements

int mark[5] = {50,60,70,80,90,100}

// make the value of the third element to 20
mark[2] = 20;

// make the value of the fifth elementto O
mark[4] = 0;

Input and Output Array Elements

Here's how you can take input from the user and store it in an array element.

// take input and store it in the 3rd element
scanf("%d", &mark([2]);

// take input and store it in the ith element
scanf("%d", &mark[i-1]);
Here's how you can print an individual element of an array.

// print the first element of the array
printf("%d", mark[0]);

// print the third element of the array
printf("%d", mark[2]);

// print ith element of the array
printf("%d", mark[i-1]);

// Program to find the average of n numbers using arrays

#include <stdio.h>
int main() {

int marks[10], i, n, sum = 0, average;

printf("Enter number of elements: ");
scanf("%d", &n);

for(i=0; i < n; ++i) {
printf("Enter number%d: ",i+1);
scanf("%d", &marksli]);

// adding integers entered by the user to the sum variable
sum += marksli];

}

average =sum/n;
printf("Average = %d", average);

return O;

}

// C program to find the smallest and largest element in an array
#include<stdio.h>

int main()

{

int a[50],i,n,large,small;

printf("\nEnter the number of elements : ");

scanf("%d",&n);

printf("\nlnput the array elements : ");

for(i=0;i<n;++i)

printf("\nelement [%d]:", i);
scanf("%d",&ali]);
}

large=small=a[0];
for(i=1;i<n;++i)

if(a[i]>large)
large=ali];
if(a[i]<small)
small=ali];

printf("\nThe smallest element is %d\n",small);
printf("\nThe largest element is %d\n",large);
return O;

}

// Program to take 5 values from the user and store them in an array
// Print the elements stored in the array
#include <stdio.h>

int main() {
int values[5];

printf("Enter 5 integers: ");

// taking input and storing it in an array

for(inti=0;i<5; ++i) { Output:
scanf("%d", &values[i]); Enter 5 integers: 1
} -3
34
printf("Displaying integers: "); 0
3
// printing elements of an array Displaying integers:
for(inti=0;i<5; ++i) { 1
printf("%d\n", valuesli]); -3
} 34
return O; 0
} 3

Multidimensional arrays

In C programming, you can create an array of arrays.
These arrays are known as multidimensional arrays.
For example,

int x[3][4];

Here, x is a two-dimensional (2d) array. The array can hold 12
elements. You can think the array as a table with 3 rows and each
row has 4 columns.

Contd...

c[0] Array Rows c[O][0] c[0][1] c[0][2] c[0][3]
c[1][0] c[1][1] c[1][2] c[1][3]
x[@][e] x[@][1] x[0][2] x[0][3] c[2][0] c[2][1] c[2]12] c[2][3]
x[1][e] = x[1][1] @ x[1][2] @ x[1][3]
Columns
x[2][@0] | x[2][1] @ x[2][2] @ x[2][3]
c[1] Array Rows c[0][0] c[0][1] c[0][2] c[0][3]
2D-array c[1][0] [C[1](2] [1][3]
c[2][Q] c[2][1] c[2][2] c[2][3]
Similarly, you can declare a three-
3D-array

dimensional (3d) array. For example,

1. The memory allocated to variable c is of data type int.
int x[2][3][4]; 2. Total capacity array can hold is 2*3*4, which is equal

to 24 elements.

3. The data is being represented in the form of 2 arrays
Here, the array x can hold 24 elements. with 3 rows and 4 columns each.

Initializing a multidimensional array

Initialization of a 2d array

// Different ways to Initialize two-dimensional array
int x[2][3] = {{1, 3, 0}, {-1, 5, 9}};
int X[][3] = {{1, 3, O}, {-1, 5, 9}};

int x[2][3] = {1, 3, 0, -1, 5, 9};

Accessing Two-Dimensional Array Elements

An element In a two-dimensional array is accessed by

using the subscripts, I.e., row index and column index
of the array.

For example
int val = a|2][3];

The above statement will take the 4th element from
the 3rd row of the array.

Example: Inserting elements in 2D-array

#include <stdio.h>
Int main () {
[* an array with 5 rows and 2 columns*/
int a|5][2];
inti, |;
/[* Input each array element's value */
for (1=0;1<5;I++){
for (J=0;)<2;]++){
printf("a[%d][%d] “, i+1,j+1);
scanf(“%d", &ali][iD;
}
}

return O;

}

Example: Accessing elements in 2D-array

#include <stdio.h>

intmain) {
[* an array with 5 rows and 2 columns?*/
Inti, J;

[* output each array element's value */
for(1=0;1<5; |+_+}§

for (j=0; <2 j++){ o

\ printf("a[%d][%d] = Y%d\n", i,j, a[il[j]);

;

return O;

}

Change Value of 2D-Array elements

int a[5][2] ={10,0}, 11,2}, 12,4}, 13,6},14,8}};

// make the value of the 3,2 element to 20
mark[2][1] = 20;

// make the value of the 5,1 element to O
mark[4][0] = O;

Examples: 2d Arrays

/I C program to store temperature of two cities of a week

and display it.
#inelude <std|o;h>. Il Using nested loop to display viues of a 2d array
constint CITY = 2; tor (inti=0 i< CITY: +4i
const int WEEK = 7: {Or (inti=0;i ; ++)
|{nt mainQ for (int] = 0;) < WEEK; ++j)
Int temperature[CITY|IWEEK]; orintf("City %d, Day %d = %d\n", i + 1, j + 1,
/I Using nested loop to store values in a 2d array temperature{i]fj]);
for (inti = 0: i< CITY; ++i) }}
{ .
for (intj = 0; j < WEEK; ++j) }return 0;
{

printf("City %d, Day %d: ", i + 1, j + 1);
scanf("%d", &temperature[i][j]);
}

}
printf("\nDisplaying values: \n\n");

#include <stdio.h>
int main()
{
float a[2][2], b[2][2], result[2][2];
/[Taking input using nested for loop
printf("Enter elements of 1st
matrix\n");
for (inti=0;1<2; ++i)
for (intj=0;] < 2; ++))
{

printf("Enter a%d%d: ", i + 1, j + 1);

scanf("%f", &a[i][j]);

}
/[Taking input using nested for loop
printf("Enter elements of 2nd

matrix\n");

for (inti=0;1<2; ++i)

for (intj=0;] < 2; ++))

{

printf("Enter b%d%d: ", i + 1, j + 1);

scanf("%f", &bl[i][i]);
}

/I C program to find the sum of two matrices of order 2*2

/[adding corresponding elements of two arrays

for (inti=0;i< 2; ++i)
for (intj=0;] <2; ++j)
{
result[i][j] = a[il[j] + bil[l;
}

// Displaying the sum
printf("\nSum Of Matrix:");

for (inti=0;i<2; ++i)
for (intj = 0; j < 2; ++j)
{
printf("%.1A\t", result[i][j]);

if (j==1)
printf("\n");
}

return O;

Initialization of a 3d array

int test[2][3][4] = {
3, 4,2,3), {0, -3, 9, 11}, {23, 12, 23, 2},
{{13, 4,56, 3}, {5, 9, 3, 5}, {3, 1, 4, O}}:

c[0] Array

c[1] Array

Rows

Rows

Columns

c[o][0]

c[1][0]

c[2][0]

Columns

c[o][0]

c[1][0]

c[2][0]

c[O][2]

c[1][2]

c[2][2]

c[O][2]

c[1][2]

c[2][2]

Try 1t yourself

* Inserting elements in a 3D array:.
» Accessing elements in a 3D array.
» Updating elements in a 3D array

Passing array to a function

In C programming, you can pass an entire array to functions.

Before that lets see, how we can pass the single/individual array elements to a
function.

#include <stdio.h>

void display(int agel, int age2) {
printf("%d\n", agel);
printf("%d\n", age2);

}

» Passing array elements to a function is similar
to passing variables to a function.

int main() {
int age[] = {2, 8, 4, 12},

Il pass second and third elements to display()
display(age[1], age[2]);
return O;

}

https://www.programiz.com/c-programming/c-user-defined-functions

Three ways of passing an array

Formal parameters as a pointer:

void myFunction(int *param) {

Formal parameters as a sized array:

void myFunction(int param[10]) {

Formal parameters as an unsized array:

void myFunction(int param[]) {

mple: Passing 1D array

A1~

/* function declaration */ _
d_oug)le getAverage(int arr[], int
size);

iInt main () {

[* an int array with 5 elements */
Int balance[5] = {1000, 2, 3, 17,

50},
ciouble avg;

[* pass pointer to the array as an
argument */
avg = getAverage(balance, 5) ;

[* output the returned value */
printf("Average value is: %f ",

avg);
ret%r)n O;

}

double getAverage(int arr[], int size) {

Int i;
double avg;
double sum = 0O;

for (i=0; i < size; ++i) {
sum += arrfi];

}

avg = sum / size;

return avg;

Example: Passing 2D array

#include <stdio.h>

void displayNumbers(int num[2][2]);

Int main(
Int num[2][2];
rintf("Enter 4 numbers:\n");
or(inti=0;1<2; ++i){
for (int) =0;] < 2; +4))
}scanfg"%d", &num[d D;
}

I/ pass multi-dimensional array to a
function
displayNumbers(num);

return O;

void displayNumbers(int num|[2][2]) {
printf("Displaying:\n");
for (inti=0;i<2;++i){
for (intj=0;j<2; ++j) {
printf("%d\n", num[i][j]);
}
}
}

When passing two-dimensional arrays, it is not mandatory to specify
the number of rows in the array. However, the number of columns
should always be specified.

void displayNumbers(int num[][2]) {
I/ code

}

Any Queries???

